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Abstract

In this work we assess the uncertainty in modelling the groundwater flow for the Pampa
del Tamarugal Aquifer (PTA) – North Chile using a novel and fully integrated multi-
model approach aimed at explicitly accounting for uncertainties arising from the defini-
tion of alternative conceptual models. The approach integrates the Generalized Likeli-5

hood Uncertainty Estimation (GLUE) and Bayesian Model Averaging (BMA) methods.
For each member of an ensemble M of potential conceptualizations, model weights
used in BMA for multi-model aggregation are obtained from GLUE-based likelihood
values. These model weights are based on model performance, thus, reflecting how
well a conceptualization reproduces an observed dataset D. GLUE-based cumulative10

predictive distributions for each member of M are then aggregated obtaining predic-
tive distributions accounting for conceptual model uncertainties. For the PTA we pro-
pose an ensemble of eight alternative conceptualizations covering all major features of
groundwater flow models independently developed in past studies and including two
recharge mechanisms which have been source of debate for several years. Results15

showed that accounting for heterogeneities in the hydraulic conductivity field (a) re-
duced the uncertainty in the estimations of parameters and state variables, and (b)
increased the corresponding model weights used for multi-model aggregation. This
was more noticeable when the hydraulic conductivity field was conditioned on available
hydraulic conductivity measurements. Contribution of conceptual model uncertainty20

to the predictive uncertainty varied between 6% and 64% for ground water head esti-
mations and between 16% and 79% for ground water flow estimations. These results
clearly illustrate the relevance of conceptual model uncertainty.

1 Introduction and scope

Due to a lack of precipitations and high evaporation rates, groundwaters in northern25

Chile are a strategic source of freshwater. One of the most important groundwater
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reserves in this region is the regional aquifer contained in the recent deposits of the
Pampa del Tamarugal basin (Fig. 1). In this basin, annual precipitation is nil at alti-
tudes below 2000 m a.s.l. but reaches values of about 200 mm yr−1 at altitudes above
3500 m a.s.l. This spatial pattern of the precipitation together with high evaporation
rates controls the hydrology of the region. Groundwater and surface water originat-5

ing in the Andes Mountains are the main water sources for human activities (Aravena,
1995).

In this region, many local towns as well as the capital city of the province (Iquique),
most of the mining industry, and a large part of the agricultural sector, entirely depend
on groundwater sources. As a result, groundwater abstraction rates from the Pampa10

del Tamarugal Aquifer (PTA) have gradually increased since the early 1960s resulting
in a steady decrease in the groundwater heads recorded in the monitoring network con-
trolled by the Dirección General de Aguas de Chile (DGA) (e.g. Rojas and Dassargues,
2007).

The study of the PTA has been a concern since the early 1960s and many local15

institutions, international aid agencies, and private companies have attempted to de-
scribe the functioning of this regional aquifer and its interactions with the scarce surface
water (see e.g. Fritz et al., 1981; Suzuki and Aravena, 1985; DGA, 1988, 1996; Mag-
aritz et al., 1990; DICTUC, 1995, 2005, 2007, 2008; JICA-DGA-PCI, 1995; Aravena,
1995; Salazar et al., 1999; DSM, 2002; Houston, 2002; Risacher et al., 2003; Rojas20

and Dassargues, 2007). These studies have been motivated by an increasing need to
secure groundwater resources for drinking water supply, agricultural activities and, to
a greater extent, by the growing pressure to provide fresh groundwater for the develop-
ment of mining activities. As a result of these studies, several groundwater flow models
(based on different conceptual models), ranging from simple approximations to more25

elaborated models, have been developed to simulate the behaviour of the PTA under
different stress conditions.

DGA (1988) reported one of the first efforts to model the groundwater flow in the PTA.
A one-layer model assuming steady-state conditions for the year 1960 and a transient-
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state model for the period 1960–1986 were developed, both using a zonation approach
to describe the hydraulic conductivity field. These models satisfactorily reproduced the
general flow pattern of the aquifer. Groundwater recharge coming from the most north-
ern sub-basin (Aroma) (Fig. 1a), however, was neglected because the simulated values
did not satisfactorily reproduce the observed groundwater heads in the northern part5

of the modelled domain. A second model (two-layer) was developed by JICA-DGA-
PCI (1995) assuming steady-state conditions for year 1993 and using constant values
for hydraulic conductivities for each layer. This model satisfactorily reproduced the
flow patterns of the aquifer and the global water balance. Calibration of this model,
however, assumed an additional recharge mechanism where a significant amount of10

groundwater recharge originated from a system of faults and deep fissures connected
with Altiplano aquifers. This recharge mechanism was based on results that demon-
strated the presence of fresh and recent groundwater at shallow levels in the centre
part of the PTA (Magaritz et al., 1990). Recent studies, however, suggest that recharge
is taking place as a result of infiltrating runoff in the apex of the alluvial fans originating15

from the eastern sub-basins due to flash flood events (Houston, 2002). The latter could
also potentially explain the presence of fresh and recent groundwater in the centre part
of the PTA, hence, contradicting the recharge mechanism assumed by JICA-DGA-PCI
(1995). In addition, steady-state conditions used in the model of JICA-DGA-PCI (1995)
are rather questionable as suggested by present-day data (see e.g. Rojas and Dassar-20

gues, 2007). A third model (two-layer) was developed by DSM (2002). Similarly to
the model of JICA-DGA-PCI (1995), this model included the groundwater recharge
originating from deep fissures connected with Altiplano aquifers, however, steady-state
conditions were assumed for year 1960 and a zonation approach for each layer was
used to describe the hydraulic conductivity field. This model satisfactorily reproduced25

the overall flow field and water balance of the aquifer. Rojas and Dassargues (2007)
developed a fourth model (one-layer) aimed at updating the knowledge of the system,
extending the transient calibration to more recent data (1960–2004), and acting as
a middle-point between models previously created. This model assumed steady-state
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conditions for year 1960 and did not include the additional groundwater recharge from
deep fissures in the development of the conceptual model. As models previously de-
veloped, the model of Rojas and Dassargues (2007) acceptably reproduced the global
water balance and the flow patterns of the PTA. Finally, two additional groundwater
flow models for the PTA have been developed by DICTUC (2005, 2008). These mod-5

els were successfully calibrated and correctly reproduced the water balance and the
general flow patterns of the PTA, although the assumed steady-state conditions (for
years 1960 and 1987) and the approach to model the spatial distribution of the hy-
draulic conductivity (zonation versus a Random Space Function-RSF approach) were
rather different.10

It is important to note, with the exception of the work of Rojas and Dassargues
(2007), that groundwater flow models previously described lack a consistent uncer-
tainty analysis and the corresponding authors assumed an accurate and unique de-
scription of the input (forcing) data, parameters, and conceptual model, hence, ne-
glecting uncertainty in these terms.15

To what extent any of these models can satisfactorily be used to manage the ground-
water resources of the PTA and to predict its responses to future stress conditions is
clearly debatable. These models were successfully calibrated using a unique set of
observed groundwater heads and values for the global water balance of the aquifer;
hence, they are all valid representations of the groundwater system. They consider,20

however, different recharge mechanisms, geological interpretations, modelling of the
observed heterogeneities in the hydraulic conductivity field, definition of the bound-
ary conditions, surface extensions, temporal scales (time-steps), spatial scales (grid-
sizes), steady-sate initial conditions, and numerical approaches to discretise the model
domain. Due to the differences in model conceptualization individual model predictions25

are prone to bias and possibly inconsistent and conflicting when the results of the al-
ternative conceptual models are compared. Additionally, predictive uncertainty estima-
tions based on a single member of the ensemble of models previously described are
likely to be under-dispersive due to omitting (potentially feasible) alternative conceptu-
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alizations from the analysis. These points are critical for the sustainable management
of the PTA where human pressure for newly developed freshwater resources is consid-
erably high and the uncertainty due to climate conditions is relatively important.

It has been recently suggested that uncertainties in groundwater model predictions
are largely dominated by this type of uncertainty (conceptual model uncertainty) and5

that accounting for parametric uncertainty solely does not allow compensating for
conceptual model uncertainty in model predictions (Bredehoeft, 2003; Neuman and
Wierenga, 2003; Neuman, 2003; Ye et al., 2004; Højberg and Refsgaard, 2005; Poeter
and Anderson, 2005; Bredehoeft, 2005; Refsgaard et al., 2006, 2007; Meyer et al.,
2007; Seifert et al., 2008; Rojas et al., 2008a). This is especially important for the case10

when predicted variables are not included in the data used for calibration (Højberg and
Refsgaard, 2005; Troldborg et al., 2007). The latter is certainly the case for PTA where
a scarce set of groundwater heads has been regularly used to calibrate the groundwa-
ter flow models whereas predictions are made for flow components and groundwater
fluxes.15

Rather than relying on a single conceptual model of a given groundwater system, it
seems more appropriate to consider a range of plausible system representations and
analyse the combined multi-model output to assess the predictive uncertainty (e.g.
Harrar et al., 2003; Højberg and Refsgaard, 2005; Poeter and Anderson, 2005; Meyer
et al., 2007; Rojas et al., 2008a; Ijiri et al., 2009). Whereas predictions based on20

a single conceptualization are more likely to be biased and under-dispersive, estimates
based on an ensemble of models are less (artificially) conservative and are more likely
to capture the unknown true predicted value (Neuman, 2003; Rojas et al., 2008a).

One approach to deal with this type of uncertainty has been recently proposed by
Rojas et al. (2008a, 2009b). The proposed methodology accounts for predictive un-25

certainty arising from inputs (forcing data), parameters, alternative conceptual models,
and (potentially) the definition of alternative scenarios by combining Generalized Like-
lihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) and Bayesian Model
Averaging (BMA) (Draper, 1995; Kass and Raftery, 1995; Hoeting et al., 1999). The
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key idea behind this approach is the concept of equifinality, that is, many combinations
of model structures and parameter sets may provide (equally) good reproductions of
the observed system response (Beven, 2006). Using a hypothetical setup, Rojas et al.
(2008a) explored the global likelihood response surface of all possible combinations of
plausible model structures, forcing data and parameter values in order to select those5

simulators that perform well. For each model structure, the posterior model probability
(model weights to aggregate multi-model predictions) was obtained by integrating the
likelihood measures over the retained simulators for that model structure. The poste-
rior model probabilities were subsequently used in BMA to weight the predictions of the
competing models when assessing the joint predictive uncertainty. Important aspects10

of this method are that (1) it does not rely on a unique optimal parameter set for each
conceptual model to assess the joint predictive uncertainty, thus, avoiding compen-
sation of conceptual model errors due to biased parameter estimates; (2) weights for
combining model predictions are obtained considering the full sampled space; (3) there
is no implicit assumption about the conditional pdf’s obtained for each alternative con-15

ceptualization; and (4) allows for the inclusion of prior information about conceptual
models, inputs and parameters, and state variables to perform conditional simulations.
A complete description of the methodology and potential advantages are discussed in
Rojas et al. (2008a, 2009b).

In this work we assess the uncertainty in groundwater flow modelling of PTA in a fully20

integrated GLUE-BMA approach accounting for uncertainties in inputs (forcing) data,
parameters, and conceptual models. We propose an ensemble M of eight alternative
conceptualizations covering all major features of the groundwater flow models (inde-
pendently) developed until present. Proposed conceptualizations range from simple
one- and two-layer approximations to more complex models where the spatial distribu-25

tion of the hydraulic conductivity field follows the theory of Random Space Functions
(RSF). We consider two mechanisms to describe the recharge process: one consid-
ering only recharge due to groundwater flows originating from the eastern sub-basins
(Fig. 1b), and the other (complementary to the previous one) due to a system of faults
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and deep fissures connecting the PTA with Altiplano aquifers (see Table 1). Based on
the results of Rojas et al. (2009a), we consider spatial conditioning of the hydraulic
conductivity field to a set of available hydraulic conductivity measurements. Finally,
we analyse the full predictive uncertainty on groundwater heads, groundwater balance
components and groundwater fluxes following the approach described in Rojas et al.5

(2008a).
The remainder of this paper is organized as follows. In Sect. 2, we provide a con-

densed overview of GLUE and BMA followed by a description of the procedure to
integrate these methods. Section 3 details the study area where the integrated uncer-
tainty assessment methodology is applied. Implementation details such as the different10

conceptualizations, sampling of parameters and the summary of the modelling proce-
dure are described in Sect. 4. Results are discussed in Sect. 5 and a summary of
conclusions is presented in Sect. 6.

2 Integrated uncertainty assessment methodology

Sections 2.1 and 2.2 summarize the basis of GLUE and BMA methodologies, respec-15

tively, for more details the reader is referred to Rojas et al. (2008a, 2009b). Section 2.3
presents the description on how to integrate these methodologies.

2.1 Generalized likelihood uncertainty estimation (GLUE) methodology

Being a Monte Carlo simulation technique relying on the concept of equifinality (Beven
and Freer, 2001), GLUE rejects the idea of a single correct representation of a system20

in favour of many acceptable system representations (Beven, 2006). For each po-
tential system simulator, sampled from a prior set of possible system representations,
a likelihood measure (e.g. Gaussian, trapezoidal, model efficiency, inverse error vari-
ance) is calculated, which reflects its ability to simulate the system responses, given
the available observed dataset D. Simulators that perform below a subjectively defined25
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rejection criterion are discarded from further analysis and likelihood measures of re-
tained simulators are rescaled so as to render the cumulative likelihood equal to one.
Ensemble predictions are based on the predictions of the retained set of simulators,
weighted by their respective rescaled likelihood.

Following the notation of Rojas et al. (2008a), let us consider a set of plausible model5

structures contained in the ensemble M, a set of parameter vectors θ and a set of input
variable vectors Y , and denote the observed and simulated system variable vectors as
D and D∗, respectively.

Following the notation of Rojas et al. (2008a), let us consider a set of plausible
model structures contained in the ensemble M = {M1,M2, . . . ,Mk , . . . ,MK |K < ∞},10

a set of parameter vectors Θ = (θ1,θ2, . . . ,θ l , . . . ,θL) and a set of input variable
vectors Y = (Y 1,Y 2, . . . ,Y m, . . . ,Y M ), and denote the observed and simulated system
variable vectors as D = (D1, D2, . . . , Dn, . . . , DN ) and D

∗ = (D∗
1, D

∗
2, . . . , D

∗
n, . . . , D

∗
N ),

respectively.
Then, L(Mk ,θ l ,Y m|D) represents the likelihood of the k-th model structure (Mk)15

parametrized with l-th parameter vector (θ l ) and forced by m-th input data vector (Y m)
to represent the true system, given the observations in D. Rojas et al. (2008a) ob-
served no significant differences in the estimation of posterior model probabilities, pre-
dictive capacity, and conceptual model uncertainty when a Gaussian, a model effi-
ciency based, or a Fuzzy-type likelihood function was used. The analysis in this work20

is therefore confined to a Gaussian likelihood function.

2.2 Bayesian model averaging (BMA)

BMA is a statistical procedure that provides a coherent framework for combining predic-
tions from multiple competing conceptual models to attain a more realistic and reliable
description of the predictive uncertainty. BMA infers average predictions by weighing25

individual (conceptual) model predictions based on their relative skill, with predictions
from better performing models receiving higher weights than those of worse perform-
ing models. Thus, BMA avoids having to choose a model over the others, instead,
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competing models are assigned different weights based on the observed dataset D
(Wasserman, 2000).

Following the notation of Hoeting et al. (1999), if ∆ is a quantity to be predicted, the
full BMA predictive distribution of ∆ for a set of alternative conceptual models defined
by M=(M1,M2, . . . ,Mk), is given by (Draper, 1995; Rojas et al., 2008a).5

p(∆|D) =
K∑

k=1

p(∆|D,Mk)p(Mk |D) . (1)

Equation (1) is an average of the predictive distributions of ∆ under each alternative
conceptual model, p(∆|D,Mk), weighted by their posterior model probability, p(Mk |D).
The posterior model probabilities reflect how well model Mk fits the observed data D

and can be computed using Bayes’ rule (see e.g. Rojas et al., 2008a)10

p(Mk |D) =
p(D|Mk)p(Mk)∑K
l=1 p(D|Ml )p(Ml )

(2)

where p(Mk) is the prior probability of model Mk , and p(D|Mk) is the integrated likeli-
hood of model Mk .

The leading moments of the full BMA prediction of ∆ are given by (Draper, 1995;
Rojas et al., 2008a)15

E [∆|D] = EM[E (∆|D,M)] =
K∑

k=1

E [∆|D,Mk ]p(Mk |D) (3)

Var [∆|D] = EM[Var (∆|D,M)] + VarM[E (∆|D,M)]

=
K∑

k=1

Var [∆|D,Mk ]p(Mk |D) +
K∑

k=1

(E [∆|D,Mk ] − E [∆|D])2p(Mk |D) . (4)
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From Eq. (4) the variance of ∆ consists of two terms: the first representing the within-
models variance, and the second representing the between-models variance (Rojas
et al., 2008a).

2.3 Multi-model approach to account for conceptual model and scenario uncer-
tainties5

Combining GLUE and BMA to account for conceptual model uncertainties involves the
following sequence of steps

1. A suite of alternative conceptualizations is proposed and prior model probabilities
are assigned. This can be done on the basis of prior and expert knowledge about
the site (see e.g. Meyer et al., 2007; Ye et al., 2008; Rojas et al., 2009b).10

2. Prior ranges are defined for the input and parameter vectors under each plausi-
ble model structure. Multi-uniform prior distributions are assumed to perform the
sampling of input and parameter vectors.

3. A likelihood measure to assess model performance and a rejection criterion are
defined. The latter can be based on exploratory runs (e.g. Rojas et al., 2008a,a),15

subjectively chosen threshold limits (e.g. Feyen et al., 2001) or set as a minimum
level of performance (e.g. Binley and Beven, 2003).

4. For the suite of alternative conceptual models, input and parameter values are
sampled using the Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953;
Hastings, 1970; Chib and Greenberg, 1995; Gilks et al., 1995) to generate simu-20

lators of the system.

5. A value for the likelihood measure p(D|Mk ,θ l )≈L(Mk ,θ l ,Y m|D) is calculated for
each simulator and, based on the rejection criteria, it is added to the subset Ak of
retained simulators for model Mk or it is discarded by setting its likelihood to zero.
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6. Steps 4–5 are repeated until the hyperspace of possible simulators is adequately
sampled, i.e. when for each model Mk the first two moments of the conditional dis-
tributions of predicted state variables based on the retained likelihood weighted
simulators converge to stable values, and the R-score (Gelman et al., 2004) for
parameters and variables of interest converges to values close to one. The R-5

score expresses the ratio of within- to between-chains variability and, thus, ap-
proximate convergence of the M-H algorithm is diagnosed when the variability be-
tween chains is not larger than that within chains (Sorensen and Gianola, 2002).

7. The integrated likelihood of each model Mk is approximated by summing
the likelihood weights of the retained simulators in the subset Ak , that is,10

p(D|Mk)≈
∑

l ,m∈Ak
L(Mk ,θ l ,Y m|D) (Rojas et al., 2008a).

8. By normalizing the integrated model likelihoods over the whole ensemble M such
that they sum up to one (using Eq. 2), the posterior model probabilities are ob-
tained.

9. After normalization of the likelihood weighted predictions under each individual15

model (such that the cumulative likelihood under each model equals one), an
approximation to is obtained, and a multi-model prediction is obtained with Eq. (1).
The leading moments of this distribution (considering the whole ensemble M ) are
then obtained using Eqs. (3) and (4).

In addition, posterior model probabilities obtained in step (8) could potentially be used20

in the prediction stage of the alternative conceptual models under alternative scenarios
(e.g. Rojas et al., 2008a).
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3 Study area

3.1 General description

The PTA is limited in the west by the coastal range and in the east by the Chilean pre-
cordillera. It covers an area of ca. 5000 km2 with dimensions of almost 160 km long,
width between 20–60 km, and an average elevation of 1000 m a.s.l. (Fig. 1).5

Recharge through direct precipitation on the PTA is not taking place as rainfall is
negligible in the area. The eastern sub-basins (Fig. 1a), on the other hand, receive
recharge from precipitation coming from high altitudes in the east. These sub-basins
lie in a well-developed rain-shadow, and as a result there is a rapid decrease in rainfall
as air masses move west and descend (Aravena et al., 1989, 1999; Houston, 2002,10

2006). For an average hydrologic year surface watercourses disappear before reach-
ing most of the alluvial fans located in the PTA suggesting that the aquifer is being
recharged by part of this water through infiltration and lateral groundwater flows (Ar-
avena, 1995). Extreme rainfall events, on the other hand, play an important role on
the recharge mechanisms making the (overused) assumption of “average” recharge15

conditions rather questionable (Houston, 2006). In this regard, evidence of recent
groundwater recharge due to flash flood events has been reported for the Chacarilla
sub-basin (VI in Fig. 1a) by Houston (2002).

The PTA is located in the Atacama Desert and thus arid conditions are extreme with
potential evaporation rates ranging between 2000 mm yr−1 and 2500 mm yr−1 (Rojas20

and Dassargues, 2007). As a consequence, the presence of natural vegetation is
limited to few places in the study area. These places correspond to natural or reforested
areas located in Dolores, Salar de Pintados and Salar de Bellavista (Fig. 1b) (Rojas
and Dassargues, 2007). These zones are composed of trees highly adapted to arid
and saline conditions and, thus, they can sustain themselves by directly extracting25

groundwater with massive and well-developed root systems (FAO, 1989). Therefore,
vegetative transpiration from these zones is an important component of the global water
balance for the PTA.
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3.2 Geology

The geology of the study area has been described in previous studies (e.g. Dingman
and Galli, 1965; DGA, 1988; JICA-DGA-PCI, 1995; Digert et al., 2003; DICTUC, 2007).
As described in Houston (2002), the basin is a complex asymmetric graben bounded
in the west and in the east by N-S regional fault zones which started to form in the early5

Oligocene. Coarse conglomerates and gravels of the Sichal and Altos de Pica Forma-
tions, eroded from the adjacent uplifted Coastal Range and Pre-Cordillera, comprise
the lowermost sediments. Coarse clastic sediments continued to be deposited over
wide areas throughout the Miocene. Some events of volcanic activity, from the erup-
tive centres located on the east, took place producing andesitic tuffs and ignimbrites.10

Towards the end of the Miocene a series of large alluvial fans began to develop. Since
the Pliocene only minor alluvial and evaporitic sediments have been deposited in the
basin.

Figure 2 shows a longitudinal geological profile (XX′) of the study area and a plan
view of the aquifer boundaries. In Fig. 2a upliftings of the basement rocks (Longacho15

Formation) are observed in the north and south limits. Also in the west (Coastal Range)
and in the east, outcroppings of this formation are observed (Fig. 2b). Overlying the
Longacho Formation is the Altos de Pica Formation, which is differentiated into lower
and upper layers. In the uppermost strata, recent sediments mainly composed of saline
alluvial deposits, gravel, sand and clay have been deposited (JICA-DGA-PCI, 1995).20

3.3 Hydrogeology

The main aquifer system of the PTA is contained in units Q4 and Q3 (Fig. 2a) (DGA,
1988; JICA-DGA-PCI, 1995). Unit Q3 is composed of sand and gravel and is underlain
by a thick clayey layer (Q2). Unit Q4 consists of sand and gravel with mud, and/or
intercalated with mud layers and is overlain by unit Q3 from Huara to Salar de Bellavista25

area (Rojas and Dassargues, 2007). A relatively good qualitative data base is available
for the description of these units. Hard data (hydraulic conductivity measurements,
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transmissivity, storativity), however, are scarce given the dimensions of the PTA and
they are in the limit to perform a meaningful geostatistical analysis. A summary of the
aquifer parameters for the PTA is presented in Table 2.

Figure 1b shows the groundwater elevation map for the year 1960 which is obtained
from nearly 60 measurement points. The main groundwater flow direction is from north5

to south with an east-west component in the area of Pica. A groundwater divide is
observed in the north area with part of the groundwater flowing towards the forested
area in Dolores (Rojas and Dassargues, 2007). Hydraulic gradients are considerably
steeper near Huara which is explained by the lower hydraulic conductivity of the de-
posits of Aroma and Tarapaca sub-basins (see Fig. 1a) (DGA, 1988). In the centre10

area of PTA, groundwater flows from east to west towards the forested Tamarugo ar-
eas and the Salar de Pintados. Both correspond to the main natural discharge areas
of the aquifer for the year 1960. In the southern area (Oficina Victoria-Cerro Gordo)
groundwater flow is mainly directed to the south-west (Rojas and Dassargues, 2007).

There is a general consensus that recharge to the PTA occurs mainly by groundwater15

flows from the eastern sub-basins, with estimations ranging between 76 032 m3 d−1

and 89 510 m3 d−1 (DGA, 1988; JICA-DGA-PCI, 1995; Aravena, 1995; Houston, 2002;
Rojas and Dassargues, 2007; DICTUC, 2008). As discussed earlier, a mechanism
where a substantial amount of groundwater recharge originating from a system of faults
and deep fissures connected with Altiplano aquifers is also assumed by some authors20

(e.g. Magaritz et al., 1990; JICA-DGA-PCI, 1995; DSM, 2002). The magnitude of this
recharge ranges between 11 834 m3 d−1 (DGA, 1996) and 24 970 m3 d−1 (JICA-DGA-
PCI, 1995) and, until today, the validity and quantification of this recharge mechanism
is an important source of uncertainty to develop a coherent conceptual model for the
PTA.25

Estimations of transpiration rates from forested areas (Fig. 1b) for the year 1960
range between ca. 1728 m3 d−1 (DICTUC, 2008) and 18 144 m3 d−1 (DGA, 1988). Di-
rect evaporation of groundwater from salares constitutes other important component
of the water balance. In the study area, an active salar system exists comprising the
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Salar de Pintados and Salar de Bellavista (Fig. 1b) (see e.g. Risacher et al., 2003). An
estimated evaporation of 46 829 m3 d−1 is obtained from DGA (1988) for the year 1960,
whereas Rojas and Dassargues (2007) estimated a range between 35 424 m3 d−1 and
52 013 m3 d−1 following the calibration of a steady-state model for the same year.

Groundwater outflows from the PTA are estimated in the order of ca. 1728 m3 d−1
5

in the north boundary, and ca. 8640 m3 d−1 in the geological section defined between
the outcrops located in Cerro Gordo and the east limit of the model (Fig. 1b) (DICTUC,
2008).

Recently, a hydrogeologic connection with a local aquifer termed La Noria has been
suggested by DICTUC (2008) (Fig. 1b). It is proposed that the PTA is recharging this10

local aquifer through a local system of faults and the estimated groundwater recharge
flows for the present situation vary between 1555 m3 d−1 and 4320 m3 d−1.

4 Implementing the multi-model approach

4.1 Alternative conceptual models

An ensemble M including eight alternative conceptualizations was considered to de-15

scribe the PTA. These conceptual models aimed at covering the main features of all
models previously developed (Fig. 3). All members of M comprised six common ele-
ments: boundary conditions expressed as constant heads at the north and south limits,
hydrogeological connection with La Noria aquifer, a transpiration zone located in Pinta-
dos, an evaporation zone accounting for Salar de Pintados and Salar de Bellavista, and20

assumed steady-state conditions for year 1960. The distinctive elements among mod-
els were the number of layers, the representation of the hydraulic conductivity field and
the recharge mechanisms (see Table 1). Model M1 (Fig. 3a) considered a two-layer
system explicitly accounting for units Q3 and Q4 (see Fig. 2a), whereas models M2
(Fig. 3b), M3 (Fig. 3c) and M4 (Fig. 3d) considered a one-layer system. Model M125

considered constant values of hydraulic conductivity for each layer, model M2 included
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a spatial zonation approach obtained from Rojas and Dassargues (2007), and mod-
els M3 and M4 used the theory of Random Space Functions (RSF) to describe the
hydraulic conductivity field, with model M4 conditioning the hydraulic conductivity re-
alizations on available hydraulic conductivity measurements. To obtain the conditional
realizations of the K-fields, we employed “conditioning by kriging” (Chilès and Delfiner,5

1999). Figure 4 shows the histogram for lnK and the modelled variogram used to sim-
ulate the hydraulic conductivity fields in the frame of models M3 and M4. The fitted
model corresponded to a nested structure including a nugget effect of 0.6 and an ex-
ponential variogram with a practical range of 10.2 km and a sill (contribution) of 1.6.
For the recharge inflows originating from the eastern sub-basins, model M1 consid-10

ered areal recharge rates distributed over small areas of the alluvial fans (Fig. 3a),
model M2 included point recharge fluxes in the apex of the alluvial fans (Fig. 3b), and
models M3 and M4 considered recharge fluxes distributed over long sections of the
eastern boundary (Fig. 3c and d).

In addition, each of the four models depicted in Fig. 3 considered an alternative15

“b” version where the recharge mechanism that assumes a connection with Altiplano
aquifers was included, hence, adding to the groundwater recharge flows from the east-
ern sub-basins. These recharge inflows where distributed over the whole modelled
domain. In summary, eight alternative conceptualizations were defined to analyse the
combined uncertainty arising from inputs, parameters, and conceptual models.20

4.2 Prior distributions

The common elements to the alternative conceptualizations defined a common group
of eight parameters, namely, the elevations of the constant head cells at the north
(CH N) and south (CH S) limits, recharge inflows from the eastern sub-basins (RECH),
recharge inflows from faults and deep fissures (RECH BAS) (only for “b” version mod-25

els), transpiration outflows (TRANSP), evaporation rates from salares (EVTR), extinc-
tion depth of the evaporation process (EXTD), and outflows to La Noria aquifer (NO-
RIA). In addition, for models M1 and M2, two and twenty-two additional parameters
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representing the hydraulic conductivity values for each layer or zones were included,
respectively.

We assigned equal prior model probabilities (1/8) to the eight alternative conceptu-
alizations and adopt uniform prior distributions for the unknown inputs and parameters.
Using these priors, we expect that the information contained in the data, expressed by5

the likelihood function, should dominate the form of the resulting posterior distributions.
The ranges that describe the prior uniform distributions of the unknown variables are
presented in Table 3.

4.3 Simulation procedure

Simulation of steady-state flow for the year 1960 employed MODFLOW-2000 (Har-10

baugh et al., 2000). The modelled domain covered an area of ca. 4300 km2 with a
length of 160 km and between 18 km and 40 km wide. Uniform cell size of 600 m×600 m
was used to discretise the modelled domain resulting in 242 rows and 118 columns.
The evaporation and the recharge packages of MODFLOW-2000 were used to repre-
sent the evaporation from salares and the transpiration from the forested areas, respec-15

tively. As discussed in Rojas and Dassargues (2007), surface extension of forested
areas as well as forest species are well documented in previous studies and, thus, the
estimation of past and present transpiration rates are relatively accurate. As a conse-
quence, we opted for a head-independent boundary condition to represent the transpi-
ration using the recharge package with negative recharge rates. Fixed inflow or outflow20

fluxes were represented with the well package.
A Gaussian likelihood measure was implemented to assess the model performance,

i.e. to assess the ability of a simulator (conceptual model+set of parameters) to repro-
duce the observed dataset D, which consisted of 42 observed heads (Fig. 1b). For con-
venience, we employed updated information about the observation wells obtained from25

DICTUC (2008) which is reported as the most accurate information until present. From
exploratory runs and considering the dimensions of the modelled domain, a departure
of ±3σh m from the observed head in each observation well is defined as rejection cri-
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terion, where the standard deviation of observed heads (σh) was assumed as 10 m.
That is, if hobs−30 m<hsim<hobs+30 m a Gaussian likelihood measure is calculated,
otherwise the likelihood is zero.

Sampling of parameters from the prior ranges presented in Table 3 was performed
using the Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970;5

Chib and Greenberg, 1995; Gilks et al., 1995). From exploratory runs, 50 parallel
Markov chains starting from randomly selected points defined in the prior parame-
ter ranges (Table 3) were implemented to proceed with the M-H algorithm for mod-
els M1 and M2. For models M3 and M4, sampled parameters were combined with
hydraulic conductivity realizations generated using the spatial correlation structure de-10

fined in Fig. 4. Based on the results of Rojas et al. (2009a), an ensemble of 100 hy-
draulic conductivity realizations was defined as minimum number to initiate the Markov
chains. That is, when a random set of parameters combined with a hydraulic con-
ductivity realization agreed with the rejection criterion, the hydraulic conductivity field
was set as fixed and the Markov chain proceeded for the set of parameters solely.15

Alternatively, one could generate a large set of hydraulic conductivity realizations and
develop a chain for each individual realization. However, given the high number of hy-
draulic conductivity realizations required to properly represent spatial variability, such
approach is computationally still intractable.

Multivariate normal distributions centred on the previous parameter values were se-20

lected as proposal distribution, i.e. q
(
θ

∗|θ i−1
)
∼N

(
θ i−1|Σθ

)
, for models M1, M2, M3

and M4. Individual variance terms of Σθ were modified by trial-and-error until an ac-
ceptance rate in the order of 20–40% was achieved for successive steps of all Markov
chains. For each proposed set of parameters a new Gaussian likelihood value was
calculated in function of the agreement between observed and simulated groundwater25

heads at the 42 observation wells depicted in Fig. 1b. The mixing of the chains and
the convergence of the posterior probability distributions was monitored using the R-
score (Gelman et al., 2004) and the length of the burn-in samples was defined from
visual inspection of the plotting series of exploratory runs for parameters and variables
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of concern.
To avoid negative effects of autocorrelation within successive steps of a chain (see

e.g. Sorensen and Gianola, 2002), final chains were thinned before calculating sum-
mary statistics. Thinning an MCMC chain means that not all (chain) samples are
recorded, instead samples are stored after k-th iterations. A thinned chain contains5

most of the information but it takes up less space in memory (Gilks et al., 1995). The
resulting total parameter sample (after discarding the burn-in samples and after thin-
ning the original sample) can be considered as a sample from the posterior distribution
given the observed dataset D for each alternative conceptual model. Using these dis-
crete samples from the M-H algorithm, the integrated likelihood of each conceptual10

model, p(D|Mk) in Eq. (2), is approximated by summing over all the retained likelihood
values for model Mk . The posterior model probabilities are then obtained by normal-
izing over the whole ensemble M. For each series of predicted variables of concern,
a cumulative predictive distribution, p(∆|D,Mk), is approximated by normalizing the re-
tained likelihood values for each conceptual model such that they sum up to one. The15

leading moments of the full BMA predictive distribution accounting for input, parameter
and conceptual model uncertainties are then obtained using Eqs. (3) and (4).

5 Results and discussion

5.1 Validation of the M-H algorithm results

Several aspects of the implementation of the M-H algorithm, such as the acceptance20

rate, the length of the burn-in samples and the proper mixing of the chains were
checked to validate the results. Acceptance rates across all models ranged between
21% and 48%, values considered acceptable (see e.g. Gilks et al., 1995; Makowski
et al., 2002). Based on the visual inspection of the plotting series for all parameters
and variables of concern (e.g. recharge inflows, transpiration outflows, evaporation out-25

flows, groundwater fluxes) and the values for the R-score of Gelman et al. (2004), the
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length of the burn-in samples was defined at 0.2N (with N being the total chain length).
After discarding the burn-in samples, this resulted in chains of 20 000 elements. Across
all models, the variation for the R-score for parameters of interest ranged between
1.003 and 1.107 for parameters CH N and RECH BAS, respectively. For variables
of interest (groundwater flux at southern section) the variation for the R-score ranged5

between 1.001 and 1.110. For the problem at hand, and given the dimensions of
the modeled domain and the complex interactions between parameters and variables
of concern, we accepted proper mixing of the chains for values of the R-score close
to 1.1, which is the value recommended for most problems by Gelman et al. (2004,
p.297). As an example, Fig. 5 shows the results for model M2a for the key param-10

eter recharge inflows. Figure 5a shows the development of fifty independent chains
of 20 000 elements after discarding the initial burn-in samples. A good overlap of the
chains is observed indicating proper mixing and convergence. Additionally, in order to
get statistically independent results and given the autocorrelation induced by succes-
sive steps of the Markov chains, the original sample was thinned. Figure 5b shows the15

effect of thinning the original sample of 1,000,000 elements after every 25 iterations.
For the original sample the autocorrelation factor is highly persistent even for lags of
1000 whereas for the thinned sample autocorrelation is below ∼0.3 for lags in the order
of 150–200. Figure 5c and d show a satisfactory convergence of the first two moments
for the predictive distribution obtained with the thinned sample. Similar results were20

obtained for the other parameters and variables of interest. Therefore, the thinned pa-
rameter samples of 40 000 elements for each conceptual model were considered to
be an independent sample from the target posterior distributions. These independent
samples were combined in a final sample containing 320 000 (40 000×8 models) el-
ements which was used to calculate summary statistics of the posterior GLUE-BMA25

predictions.
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5.2 Likelihood response surfaces

Figure 6 shows scatter plots of likelihood values for models M1a, M2a, M3a, and M4a
for three key groundwater flow components, namely, recharge inflows, evaporation out-
flows, and groundwater fluxes passing through a section defined by the outcrop at
Cerro Gordo and the east boundary of the modelled domain (see Fig. 1b). The latter5

has been estimated in previous studies, hence, is included here for comparison.
In general, the global likelihood response surfaces for models M3a and M4a are

better defined and less disperse compared to models M1a and M2a, indicating the rel-
evance of describing the hydraulic conductivity field in more detail and the importance
of conditioning the field to hydraulic conductivity measurements. This result is in full10

agreement with the findings of Rojas et al. (2009a). For recharge inflows (Fig. 6a–
d), a clear region of attraction is identified, which contains the range of estimations
made in previous studies. Conditioning the hydraulic conductivity field shows a clear
effect on the peakedness of the likelihood surface, which is consistent with the range of
previous estimations. The latter indicates the relevance of properly honouring the mea-15

sured values of hydraulic conductivity. Evaporation outflows (Fig. 6e–h) show a similar
pattern as the one for recharge inflows, however, the peak of the likelihood surfaces
defined by models M3a and M4a is somewhat biased compared to the range of pre-
vious estimations. An attraction zone for the likelihood response surface is observed,
with the range of the previous estimations defining an upper limit for the evaporation20

outflows. Likewise recharge inflows, describing the hydraulic conductivity field in more
detail decreases the spread of the likelihood surfaces, hence, decreasing uncertainty.
For evaporation outflows under model M1a (Fig. 6e), and also groundwater outflows
under model M2a (Fig. 6j), however, the range defined by previous estimations is lo-
cated rather at the tail of the likelihood response surfaces, indicating that either these25

models fail to properly estimate these two flow components or previous estimations
are rather conservative. For the groundwater outflows (Fig. 6i–l), increasing the com-
plexity of the model considerably improves the accuracy of the estimation, suggesting
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that conditioning to hydraulic conductivity measurements plays an important role in the
estimations of groundwater fluxes calculated at the Cerro Gordo section (Fig. 1b). Fig-
ures 6k and 6l show that the likelihood response surfaces obtained with models M3a
and M4a are consistent with previous estimations. When the hydraulic conductivity
field is conditional on hydraulic conductivity measurements, however, previous estima-5

tions for the groundwater outflows at the southern section correspond to a local max-
imum in the likelihood response surface. From Fig. 6l, however, another highly likely
value can be identified for these groundwater outflows in the range between 3310–
4433 m3 d−1. This new range indicates an average reduction of the groundwater fluxes
through the southern section of ca. 55% compared to previous estimations. This may10

play an important role in the management of the groundwater resources in the study
area since groundwater fluxes through the section defined at Cerro Gordo are consid-
ered recharge inflows to the local aquifer system of Salar Viejo located south of PTA
(DICTUC, 2008).

5.3 Posterior model probabilities15

Table 4 shows the results for the integrated model likelihoods and the posterior model
probabilities for all eight conceptualizations. It is seen from this table that increasing the
detail on the description of the PTA increases the posterior model probabilities of the
corresponding models. In this way, conceptual models using conditional realizations
of the hydraulic conductivity field show higher posterior model probabilities. In addi-20

tion, when the alternative recharge mechanism is considered (models M1b, M2b, M3b
and M4b), posterior model probabilities also increase for detailed descriptions of the
PTA.

There seems to be no clear relationship between posterior model probabilities ob-
tained for models including only recharge from the eastern sub-basins (a-version25

models) or models including both the recharge from the eastern sub-basins and the
recharge due to deep fissures (b-version models). For example, models M1a and M3a
show higher posterior weight compared to models M1b and M3b, respectively, whereas
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the opposite is observed for models M2a and M2b, and models M4a and M4b. This
indicates that the information content of the dataset D (42 observed heads) used to
assess the alternative conceptual models does not allow a consistent discrimination
between both recharge mechanisms. Therefore, other sources of information or con-
ditioning data apart from head and hydraulic conductivity measurements should be5

considered.

5.4 Groundwater model predictions accounting for conceptual model
uncertainties

5.4.1 Groundwater heads

Figure 7 shows a set of representative observation wells and the corresponding pre-10

dictive distributions obtained for the alternative conceptualizations and the full BMA
predictive distribution obtained from the GLUE-BMA methodology. Despite the fact
heads at the observation wells were used as conditioning data, predictive distributions
for the simulated groundwater heads varied significantly in spread, shape and central
moment. The BMA predictive distribution accounts for these differences and, hence,15

represents a good compromise among all predictions obtained from the alternative
conceptualizations. There is a slight tendency to larger spreads of the predictive distri-
butions for models M3b and M3a. The latter may be explained by the fact that model M3
describes the hydraulic conductivity fields using unconditional realizations following the
spatial correlation structure shown in Fig. 4 solely. Thus, the level of spatial uncertainty20

is relatively high compared to the conditional case (model M4) or simpler models (M1
and M2).

Figure 7 also includes the location of 15 synthetic piezometers used to assess the
impact of conceptual model uncertainty at points not included in the dataset D. Al-
though not shown here, predictive distributions for these synthetic piezometers varied25

substantially in shape, central moment and spread due to the definition of the alterna-
tive conceptualizations. For these synthetic piezometers the contribution of conceptual

5905

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/5881/2009/hessd-6-5881-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/5881/2009/hessd-6-5881-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 5881–5935, 2009

Assessment of
conceptual model

uncertainty for
Pampa del Tamarugal

R. Rojas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

model uncertainty was relatively important as individual model predictions at these lo-
cations varied substantially from the average prediction (see e.g. Fig. 9b and Tables 5
and 6). The latter indicates that conceptual model uncertainty is more significant for
spatial points not included as conditioning data.

5.4.2 Groundwater flow components5

In general, predictive distributions for the groundwater flow components differed sig-
nificantly among models indicating an important contribution of conceptual model un-
certainty to the predictive uncertainty (Fig. 8). Models M3 and M4 showed a better
predictive coverage of the ranges estimated in previous studies compared to mod-
els M1 and M2. For transpiration outflows, however, the lower limit of the range defined10

by previous estimations was defined rather at the tail of all individual and the BMA pre-
dictions. This suggests that it is likely that higher transpiration outflows were observed
for year 1960 compared to the lower values estimated by DICTUC (2008) for this flow
component.

For the groundwater outflows to La Noria aquifer (Fig. 8e), all conceptualizations15

showed a similar (in spread and central moment) predictive distribution. In addition,
the most reliable estimation available for these outflows (1555 m3 d−1) (DICTUC, 2008)
was located at the lower tail of the predictive distributions, indicating that it is likely that
the outflows from PTA to La Noria aquifer might be higher than the current estima-
tion. It is important to note that the estimation made by DICTUC (2008) corresponds20

to present situation where the groundwater elevations for the PTA are relatively deeper
compared to the situation in 1960. Thus, it is likely that for year 1960 the groundwa-
ter outflows from PTA to La Noria were somewhat higher due to possibly steeper hy-
draulic gradients in the section defining the hydrogeological connection between PTA
and La Noria aquifers.25
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5.5 Contribution to predictive variance

The predictive variance for groundwater heads at observation points, for the synthetic
piezometers, and for the groundwater flow components are shown in Tables 5, 6, and 7,
respectively. Estimations of groundwater heads at the north area of the modelled do-
main showed to be the most uncertain, presenting the highest variances for observation5

wells C-30 and A-13 and piezometers P1, P2 and P3 (see Fig. 9). This is due to the
effects of groundwater recharge inflows from two major eastern sub-basins located in
that area (Aroma and Tarapaca), which on average accounts for more than 60% of the
total recharge to the PTA. Groundwater recharge inflows derived from these sub-basins
considerably affect the uncertainty in the estimation of the groundwater heads in the10

northern area. The latter is in full agreement with the results obtained by Rojas and
Dassargues (2007). Also at the southern area of the modeled domain relatively high
variances were observed for observation well 294 and piezometers P13, P14 and P15,
indicating high uncertainty in the estimation of the heads in this area. This may par-
tially be explained by the presence of the recharge front originated from the Chacarilla15

sub-basin (see Fig. 1), which on average accounts for 20% of the total recharge to the
PTA, and also due to the proximity of the south boundary condition.

For observation wells the contribution of variance derived from conceptual model
uncertainty to the predictive variance varied between 10% and 45%, whereas for
piezometers ranged between 6% and 64% (Fig. 9). In the north area, the definition20

of alternative conceptual models showed a significant impact on the uncertainty esti-
mations (see observation wells C-30 and A-13 in Fig. 9a). It is worth noticing, however,
that for observation wells 162 and 315 conceptual model uncertainty also significantly
contributed to the predictive variance of head estimations. Observation well 315 is lo-
cated in the distal part of the alluvial fan formed in the Chacarilla sector, hence, it is25

influenced by the groundwater recharge inflows originating from this sub-basin. There-
fore, different ways to represent these recharge inflows will have an impact on the
uncertainty estimation for the head at this well. Observation well 162, on the contrary,
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is located at the western side of the modeled domain in the Salar de Pintados area,
near the discharge points connecting PTA and La Noria aquifers (see Figs. 1 and 7).
This proximity to these discharge points could only explain the contribution of within-
models variance to the predictive variance in the estimation of the head at this well,
since by definition these discharging points are a common element for all eight alterna-5

tive conceptualizations. In addition, if recharge inflows originating from the Chacarilla
sub-basin were influencing the estimation of conceptual model uncertainty in well 162,
a similar influence should also be noticed for the wells located in between wells 315 and
162. However, this is not observed. Therefore, the only probable explanation for this
large contribution of conceptual model uncertainty to the predictive uncertainty in well10

162 is the differences in the representation of the hydraulic conductivity field among all
eight alternative conceptualizations. This suggests that for areas not directly affected
by recharge fronts, the representation of the hydraulic conductivity field dominates the
contribution of conceptual model uncertainty to predictive variance in the estimation of
groundwater heads.15

Results from Fig. 9 can be thought of as a split-sample test using multiple conceptual
models, where forty-two data values are used for obtaining the model weights (poste-
rior model probabilities) for multi-model aggregation and fifteen data values are used
as a pseudo-validation sample (see Fig. 7). Results show that for the pseudo-validation
sample (synthetic piezometers) the predictive variances are significantly higher com-20

pared to predictive variances obtained using the forty-two observation wells. This in-
dicates the relevance of conceptual model uncertainty for spatial data not included as
conditioning points (pseudo-validation sample).

Figure 10 shows the percentage contribution of conceptual model uncertainty to the
predictive variance for the groundwater flow components of interest. In general, uncer-25

tainty arising from the alternative conceptualizations was significantly more important
for the recharge inflows accounting for 76% and 79% of the predictive variance for the
estimation of recharge originating from the Chacarilla sub-basin and for the effective
recharge inflows from all sub-basins, respectively. For the recharge inflows, the most
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uncertain (individual) estimations were linked to simpler models M1 and M2, whereas
the most accurate estimations were associated to models M3 and M4 (see Fig. 8). This
shows the relevance of describing the hydraulic conductivity field following a RSF to ob-
tain more confident recharge estimations. If simpler models are used, it is likely that
recharge estimations will be highly uncertain, therefore, more effort should be invested5

in describing the recharge mechanisms when working with simpler conceptualizations
to approximate the PTA.

Estimation of groundwater outflows defined at the southern section of Cerro Gordo
also showed a large contribution of conceptual model uncertainty (55%). For this flow
component, the largest individual variances are associated to models M2 and M1,10

respectively. Neglecting this contribution of between-models variances to the predictive
uncertainty may have serious implications on groundwater management of the study
area since these groundwater fluxes are considered the main recharge inflows to the
southern aquifer of Salar Viejo.

The contribution of conceptual model uncertainty to the predictive variance for the15

transpiration outflows resulted in the order of 30% with the largest individual variance
obtained for model M2. For evaporation outflows and discharges to La Noria aquifer,
contributions of between-models variance were 19% and 16%, respectively. It is worth
noticing that even for the case of the outflows to La Noria, where predictive distributions
were rather similar between the alternative conceptualizations, a moderate contribution20

of conceptual model uncertainty was observed.
Figure 10 illustrates the importance of conceptual model uncertainty when making

extrapolations beyond the dataset used for calibration. The main dataset used for
estimation of posterior model probabilities were groundwater heads whereas model
predictions were obtained for flow components. These results show the relevance25

of considering alternative conceptual models for predictions of variables not used as
calibration targets and are in full agreement with Harrar et al. (2003); Troldborg et al.
(2007); Seifert et al. (2008).
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6 Summary and conclusions

In this work we assessed the uncertainty in groundwater flow modelling of the regional
aquifer Pampa del Tamarugal located in northern Chile using a multi-model method-
ology aimed at explicitly accounting for conceptual model uncertainty. We proposed
an ensemble (M) of eight alternative conceptualizations covering all major features of5

groundwater flow models previously developed, ranging from a simple two-layer rep-
resentation to models fully accounting for the spatial heterogeneity of the hydraulic
conductivity field. We further developed models representing the heterogeneity of K -
field by conditioning the realizations to available hydraulic conductivity measurements.
We included two recharge mechanisms, which have been source of debate for several10

years to account for uncertainties in the recharge inflows to the groundwater system.
For each member of the ensemble M, integrated model likelihoods and posterior model
probabilities were derived, which were then used to obtain multi-model predictions that
explicitly account for conceptual model uncertainty.

By definition, results of the GLUE-BMA methodology are conditional on the proposed15

ensemble M of alternative conceptual models, hence, the “quality” of the GLUE-BMA
predictions is linked to the “comprehensiveness” of the ensemble M. That is, if the
members of M cover a suitable range of potential conceptualizations while ensuring
that they are different enough to consider them mutually exclusive, the quality of the
GLUE-BMA approach will be improved. On the contrary, if models are rather simi-20

lar (under-sampling) or tend to reflect fairly similar processes or features (biased), the
“quality” of the uncertainty assessment using the GLUE-BMA method will be weak-
ened.

We acknowledge that other model structures could be included in the analysis, for
example, other spatial distributions (zonations) to describe the hydraulic conductivity25

field, a full two-layer description for the aquifer system or even a larger modelled do-
main to explicitly connect the PTA with aquifer systems located to the south or west
(e.g. Salar Viejo, Salar de Llamara and La Noria). First, any spatial distribution (zona-
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tion) of the hydraulic conductivity field obtained through a scientifically sound method
(e.g. model calibration) is considered a valid representation of the K -field. Hence, alter-
native zonations are equally likely and valid in the frame of this uncertainty assessment.
For pragmatic reasons, a spatial zonation available from Rojas and Dassargues (2007)
was selected. Second, a two-layer description of the groundwater system would be5

suitable if the dataset used to characterize separately both units (Q3 and Q4) of the
PTA was comprehensive. Given the dimensions of the aquifer system, the current level
of information is scarce and the number of available hard data on key parameters is
at its limit to perform a meaningful geostatistical analysis. Thus, it seems more con-
servative to combine both units (Q3 and Q4) in one hydrostratigraphic unit and model10

PTA as a regional two-dimensional system. If more hard data on key parameters were
(independently) collected for both units, a two-layer conceptualization fully accounting
for the heterogeneities on both units would be worth exploring. Third, including a larger
model domain would imply to increase the dataset D to assess the model performance
as more information would be available from southern or western aquifer systems. To15

correctly assess the conceptual model uncertainty, however, a common dataset D to
all conceptualizations should be used since models including more data to assess the
model performance would be implicitly accounting for the worth of the additional data,
hence, masking the actual weight of the conceptualization.

The main findings of this work can be summarized as follows:20

1. Considering a more detailed description of the heterogeneity of the hydraulic con-
ductivity fields reduced the spread of the likelihood response surfaces, hence,
decreasing the uncertainty in the estimations of parameters and state variables
of concern for the PTA.

2. The GLUE-BMA predictive distributions encompassed estimations made in pre-25

vious studies, thus, showing consistence with previous knowledge about the
groundwater system.

3. Models M1 and M2 failed to adequately characterize the range of estimations
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from previous studies for transpiration outflows, groundwater recharge from deep
fissures and the outflows from PTA to La Noria aquifer.

4. Fully accounting for the heterogeneity of the hydraulic conductivity field and con-
ditioning the field on hydraulic conductivity measurements increased the posterior
model probabilities.5

5. A set of 42 head observations did not allow a clear discrimination between the two
recharge mechanisms considered in this study. To further differentiate about the
validity of both recharge mechanisms other sources of information or conditioning
data should be considered. A better characterization of both Q3 and Q4 units
to independently condition the K -fields will likely result in a better discrimination10

between the recharge mechanisms.

6. There seems to be an apparent spatial relationship between the level of uncer-
tainty in the estimations of groundwater heads and areas directly affected by
recharge fronts.

7. For areas not affected by the recharge fronts, conceptual model uncertainty15

seems to be driven by the alternative representations of the hydraulic conduc-
tivity field among models.

8. The relevance of conceptual model uncertainty is more significant for spatial data
not included as (spatial) conditioning points and for prediction of variables not
used as calibration targets, i.e. extrapolations beyond the dataset used for cali-20

bration. These results are in full agreement with Harrar et al. (2003); Troldborg
et al. (2007); Seifert et al. (2008).

9. Contribution of conceptual model uncertainty varied between 16% and 79% of the
predictive variance for the groundwater flow components whereas for the estima-
tions of heads at the observation wells and at the synthetic piezometers varied25

between 7% and 64% or the predictive variance.
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Table 1. Summary of alternative conceptual models.

Geological setup and spatial distribution of K Recharge mechanism

Eastern sub-basins Eastern sub-basins+
deep fissures in basement rocks

Two-layer and constant value of K for each layer M1a M1b
One-layer and zonation of K (22 zones) M2a M2b
One-layer and (unconditional) RSF representing K M3a M3b
One-layer and (conditional) RSF representing K M4a M4b
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Table 2. Summary of aquifer parameters of the Pampa del Tamarugal Aquifer (PTA) obtained
from 62 measurement points. Adapted from JICA-DGA-PCI (1995) and DICTUC (2008).

Zone Transmissivity Hydraulic Storativity
(m2 d−1) conductivity (–)

(m d−1)

Dolores 7–905 1.1–35.9 3.0×10−4–0.30
Huara 8–935 0.1–29.1 5.7×10−7–0.08
Pozo Almonte – Pintados 21–2097 0.3–42.4 2.0×10−6–0.20
Oficina Victoria – Cerro Gordo 29–1500 0.8–150 3.0×10−7–0.33
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Table 3. Range of prior uniform distributions for unknown parameters.

RangeParameter

Minimum Maximum

Recharge (RECH) (m3 d−1) 0 345600
Recharge from deep fissures in basement rocks (RECH BAS) (m3 d−1) 0 172800
Transpiration forested areas (TRANSP) (m3 d−1) 0 172800
Discharge to La Noria aquifer (NORIA) (m3 d−1) 0 86400
Evaporation rate (EVAP) (m d−1) 0 0.01
Extinction depth (EXTD) (m) 0 20
Elevation constant head north (CH N) (m) 1075 1120
Elevation constant head south (CH S) (m) 875 920
Hydraulic conductivitya (K ) (m d−1) 0 100

a Included only for models M1 and M2.
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Table 4. Integrated model likelihoods (p(D|Mk)), prior model probabilities (p(Mk)), and posterior
model probabilities (p(Mk |D)) for the alternative conceptual models.

Conceptual models

M1a M1b M2a M2b M3a M3b M4a M4b Total

p(D|Mk) 597.3 590.9 620.4 656.5 741.6 726.5 759.3 797.4 5498.84
p(Mk) (1/8) (1/8) (1/8) (1/8) (1/8) (1/8) (1/8) (1/8) 1.0
p(Mk |D) 0.1088 0.1076 0.1130 0.1196 0.1351 0.1323 0.1382 0.1452 1.0
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Table 5. Summary of predictive variances for estimations of groundwater heads at observation
wells (see Fig. 1b). Values expressed in m2.

Observation well nr.

162 237 263 276 281 286 290 294 C-30 315 D-60 A-13 133

Predictive variance 41.8 23.6 30.0 31.9 36.5 36.2 26.5 62.8 134.8 60.3 89.6 211.7 41.2
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Table 6. Summary of predictive variances for estimations of groundwater heads at synthetic
piezometers (see Fig. 1b). Values expressed in m2.

Synthetic piezometers

P1 P2 P3 P4 P7 P10 P11 P12 P13 P14 P15

Predictive variance 191.0 345.9 299.7 209.7 54.6 30.7 60.9 76.5 88.6 102.0 146.9
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Table 7. Summary of predictive variances for estimations of groundwater flow components.
Values expressed in (m3 d−1)2.

GW flow component Predictive variance

Recharge inflows 1.93×1010

Evaporation outflows 4.39×1011

Transpiration outflows 2.80×109

Recharge Chacarilla sub-basin 3.26×108

Discharge to La Noria aquifer 5.41×108

Recharge from deep fissures 7.47×109

GW outflows at Cerro Gordo 4.23×109
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Fig. 1. (a) Location of study area, Pampa del Tamarugal Aquifer (PTA), eastern sub-basins
(I: Aroma, II: Tarapaca, III: Quipisca, IV: Sagasca, V: Quisma, VI: Chacarilla, VII: Ramada) and
topographic line 3500 m a.s.l. for the occurrence of precipitation (solid line), (b) groundwater
elevation map (m a.s.l.) for the PTA for year 1960 (assumed steady-state conditions) (adapted
from Rojas and Dassargues, 2007).
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Fig. 2. (a) Geological longitudinal profile (XX′) of PTA and (b) planar delimitation of the aquifer
boundaries and basement rocks outcroppings (after Rojas and Dassargues, 2007).
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Fig. 3. Model setup for four alternative conceptual models: (a) M1 (two-layer model with con-
stant values of K in each layer), (b) M2 (one-layer model with zonation of K ), (c) M3 (one-layer
model, unconditional RSF), and (d) M4 (one-layer model, conditional RSF).
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Fig. 4. (a) Histogram for hydraulic conductivity measurements and (b) modelled variogram to
describe the spatial correlation structure of lnK for the PTA. Horizontal dashed line represents
the variance of measurements.
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Fig. 5. Results from the M-H algorithm for recharge inflows from the eastern sub-basins for
model M2a: (a) 50 independent Markov chains, (b) autocorrelation function for the original sam-
ple and thinned sample, (c) convergence of the mean for the predictive distribution of recharge
inflows (thinned sample), and (d) convergence of the variance for the predictive distribution of
recharge inflows (thinned sample).
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Fig. 6. Scatter plots of likelihood values for recharge inflows (a–d), evaporation outflows (e–h),
and groundwater fluxes at the section defined between Cerro Gordo and the east boundary of
the model (i–l) for models M1a, M2a, M3a, and M4a. Vertical dashed lines represent the range
of estimated values from previous studies.
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Fig. 7. Predictive distributions for a set of observation wells for the alternative conceptual
models and the corresponding BMA predictive distribution. Vertical dashed lines represent
observed head. Crosses represent synthetic locations where uncertainty was estimated.
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Fig. 8. Predictive cumulative distributions for groundwater flow components: (a) recharge in-
flows, (b) evaporation outflows, (c) transpiration outflows, (d) recharge Chacarilla sub-basin,
(e) discharge to La Noria aquifer, (f) recharge due to faults and deep fissures, and (g) ground-
water outflows in the eastern section of Cerro Gordo. Vertical dashed lines represent the range
of estimated values from previous studies.
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Fig. 9. Predictive variance obtained using Eq. (4) expressed as a percentage contribution from
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piezometers depicted in Fig. 1b.
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centage of the predictive variance) for main groundwater flow components of the PTA.
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